Acri, A., Nijman, E., Conrado, E., and Offner, G.: Experimental
structure-borne energy flow contribution analysis for vibro-acoustic source
ranking, Mech. Syst. Signal Pr., 115, 753–768, https://doi.org/10.1016/j.ymssp.2018.06.050, 2019.

Arasan, U., Marchetti, F., Chevillotte, F., Tanner, G., Chronopoulos, D.,
and Gourdon, E.: On the accuracy limits of plate theories for vibro-acoustic
predictions, J. Sound Vib., 493, 115848, https://doi.org/10.1016/j.jsv.2020.115848, 2021.

Bi, S. F., Ouisse, M., Foltête, E., and Jund, A.: Virtual decoupling of
vibroacoustical systems, J. Sound Vib., 401, 169–189,
https://doi.org/10.1016/j.jsv.2017.04.040, 2017.

Chen, Z., Chan, T. H. T., Nguyen, A., and Yu, L.: Identification of vehicle
axle loads from bridge responses using preconditioned least square
QR-factorization algorithm, Mech. Syst. Signal Pr., 128,
479–496, https://doi.org/10.1016/j.ymssp.2019.03.043, 2019.

Dai, H., Long, X. H., Chen, F., and Bian, J.: Experimental investigation of
the ring-planet gear meshing forces identification, J. Sound
Vib., 493, 115844, https://doi.org/10.1016/j.jsv.2020.115844, 2021.

Daneshjou, K., Talebitooti, R., and Kornokar, M.: Vibroacoustic study on a
multilayered functionally graded cylindrical shell with poroelastic core and
bonded-unbonded configuration, J. Sound Vib., 393, 157–175,
https://doi.org/10.1016/j.jsv.2017.01.001, 2017.

Ege, K., Roozen, N. B., Leclère, Q., and Rinaldi, R. G.: Assessment of
the apparent bending stiffness and damping of multilayer plates; modelling
and experiment, J. Sound Vib., 426, 129–149, https://doi.org/10.1016/j.jsv.2018.04.013, 2018.

Feng, Z. P. and Zuo, M. J.: Vibration signal models for fault diagnosis of
planetary gearboxes, J. Sound Vib., 331, 4919–4939,
https://doi.org/10.1016/j.jsv.2012.05.039, 2012.

Garambois, P., Donnard, G., Rigaud, E., and Perret-Liaudet, J.: Multiphysics
coupling between periodic gear mesh excitation and input/output fluctuating
torques: Application to a roots vacuum pump, J. Sound Vib.,
405, 158–174, https://doi.org/10.1016/j.jsv.2017.05.043, 2019.

Guo, Y., Eritenel, T., Ericson, T. M., and Parker, R. G.: Vibro-acoustic
propagation of gear dynamics in a gear-bearing-housing system, J.
Sound Vib., 333, 5762–5785, https://doi.org/10.1016/j.jsv.2014.05.055, 2014.

He, G. L., Ding, K., Li, W. H., and Li, Y. Z.: Frequency response model and
mechanism for wind turbine planetary gear train vibration analysis, IET
Renew. Power Gen., 11, 425–432, https://doi.org/10.1049/iet-rpg.2016.0236, 2017.

Hotait, M. A. and Kahraman, A.: Experiments on the relationship between the
dynamic transmission error and the dynamic stress factor of spur gear pairs,
Mech. Mach. Theory, 70, 116–128,
https://doi.org/10.1016/j.mechmachtheory.2013.07.006, 2013.

Hu, W. G., Liu, Z. M., Liu, D. K., and Hai, X.: Fatigue failure analysis of
high speed train gearbox housings, Eng. Fail. Anal., 73, 57–71,
https://doi.org/10.1016/j.engfailanal.2016.12.008, 2017.

Inalpolat, M. and Kahraman, A.: A theoretical and experimental investigation
of modulation sidebands of planetary gear sets, J. Sound
Vib., 323, 677–696,
https://doi.org/10.1016/j.jsv.2009.01.004, 2009.

Kosała, K.: Calculation models for analysing the sound insulating
properties of homogeneous single baffles used in vibroacoustic protection,
Appl. Acoust., 146, 108–117,
https://doi.org/10.1016/j.apacoust.2018.11.012, 2019.

Li, Y. Z., Ding, K., He, G. L., and Yang, X. Q.: Vibration modulation
sidebands mechanisms of equally-spaced planetary gear train with a floating
sun gear, Mech. Syst. Signal Pr., 129, 70–90, https://doi.org/10.1016/j.ymssp.2019.04.026, 2019.

Liang, X., Zuo, M. J., and Feng, Z.: Dynamic modeling of gearbox faults: A
review, Mech. Syst. Signal Pr., 98, 852–876, https://doi.org/10.1016/j.ymssp.2017.05.024, 2018.

Lin, T. L. and Zhang, K.: An analytical study of the free and forced
vibration response of a ribbed plate with free boundary conditions, J. Sound Vib., 422, 15–33,
https://doi.org/10.1016/j.jsv.2018.02.020, 2018.

Marchetti, F., Ege, K., Leclère, Q., and Roozen, N. B.: On the
structural dynamics of laminated composite plates and sandwich structures; a
new perspective on damping identification, J. Sound Vib.n,
474, 115256, https://doi.org/10.1016/j.jsv.2020.115256, 2020.

Morgado, T. L. M., Branco, C. M., and Infante, V.: A failure study of
housing of the gearboxes of series 2600 locomotives of the Portuguese
Railway Company, Eng. Fail. Anal., 15, 154–164, https://doi.org/10.1016/j.engfailanal.2006.11.052, 2008.

Pan, C. D., Yu, L., Liu, H. L., Chen, Z. P., and Luo, W. F.: Moving force
identification based on redundant concatenated dictionary and weighted
*l*_{1}-norm regularization, Mech. Syst. Signal Pr., 98,
32–49, https://doi.org/10.1016/j.ymssp.2017.04.032, 2018.

Rohan, E. and Lukeš, V.: Homogenization of the vibro–acoustic
transmission on perforated plates, Appl. Math. Comput., 361,
821–845, https://doi.org/10.1016/j.amc.2019.06.005, 2019.

Rosa, S. D., Desmet, W., Ichchou, M., Ouisse, M., and Scarpa, F.:
Vibroacoustics of periodic media: Multi-scale modelling and design of
structures with improved vibroacoustic performance, Mech. Syst.
Signal Pr., 142, 106870, https://doi.org/10.1016/j.ymssp.2020.106870, 2020.

Sakaridis, E., Spitas, V., and Spitas, C.: Non-linear modeling of gear drive
dynamics incorporating intermittent tooth contact analysis and tooth
eigenvibrations, Mech. Mach. Theory, 136, 307–333, https://doi.org/10.1016/j.mechmachtheory.2019.03.012, 2019.

Sánchez, M. B., Pleguezuelos, M., and Pedrero, J. I.: Approximate
equations for the meshing stiffness and the load sharing ratio of spur gears
including hertzian effects, Mech. Mach. Theory, 109, 231–249,
https://doi.org/10.1016/j.mechmachtheory.2016.11.014, 2017.

Suslin, A. and Pilla, C.: Study of Loading in Point-involute Gears, Procedia
Engineer., 176, 12–18, https://doi.org/10.1016/j.proeng.2017.02.267, 2017.

Tittus, P. and Diaz, P. M.: Horizontal axis wind turbine modelling and data
analysis by multilinear regression, Mech. Sci., 11, 447–464, https://doi.org/10.5194/ms-11-447-2020, 2020.

Tomilina, T. M.: New Approaches to Design of Structures with Required
Vibroacoustic Properties, Procedia Engineer., 106, 350–353, https://doi.org/10.1016/j.proeng.2015.06.044, 2015.

Wang, Q. B., Zhao, B, Fu, Y., Kong, X. G., and Ma, H.: An improved
time-varying mesh stiffness model for helical gear pairs considering axial
mesh force component, Mech. Syst. Signal Pr., 106,
413–429, https://doi.org/10.1016/j.ymssp.2018.01.012, 2018.

Weis, P., Kučera, Pecháč, P., and Močilan, M.: Modal
Analysis of Gearbox Housing with Applied Load, Procedia Engineer., 192,
953–958, https://doi.org/10.1016/j.proeng.2017.06.164, 2017.

Wu, H., Wu, P. B., Li, F. S., Shi, H. L., and Xu, K.: Fatigue analysis of
the gearbox housing in high-speed trains under wheel polygonization using a
multibody dynamics algorithm, Eng. Fail. Anal., 100, 351–364,
2019.

Yang, Y., Fenemore, C., Kingan, M. J., and Mace, B. R.: Analysis of the
vibroacoustic characteristics of cross laminated timber panels using a wave
and finite element method, J. Sound Vib., 494, 115842,
https://doi.org/10.1016/j.jsv.2020.115842, 2021.

Zhou, H. A., Zhao, Y. G., Wu, H. Y., and Meng, J. B.: The vibroacoustic
analysis of periodic structure-stiffened plates, J. Sound
Vib., 481, 115402, https://doi.org/10.1016/j.jsv.2020.115402, 2020.